Yuyang WANG

Research Interests –

My research centers on enabling the design of system connectivity that is ultra high-bandwidth, energy-efficient, and adaptable in today's datadriven world. Tackling the significant communication bottlenecks found in modern distributed computing infrastructures, exacerbated by data-intensive AI and machine learning workloads, I am committed to designing—as well as democratizing the design process for—scalable architectures that maximize the capabilities of integrated silicon photonics, bridging communication and computation. With a deeper integration of photonics within computing sockets, I envision a paradigm shift in computing architectures that promises unparalleled interconnection bandwidth density, versatility, and functionalities.

CURRENT APPOINTMENT -

Columbia University in the City of New York

Postdoctoral Research Scientist, Columbia Nano Initiative

– Mentored by Prof. Keren Bergman

Education -

University of California, Santa Barbara

Ph.D. in Electrical and Computer Engineering

- Co-advised by Prof. Kwang-Ting Cheng and Prof. John E. Bowers

University of California, Santa Barbara

M.S. in Electrical and Computer Engineering

Tsinghua University

B.Eng. in Electronic Engineering

Professional Experience –

Semiconductor Research Corporation (SRC) Research Scholars Program

Research Scholar, Center for Ubiquitous Connectivity (CUbiC) under SRC JUMP 2.0

- Contributed to the writing and visualization of the proposal that led to the award of \$35M JUMP 2.0 grant for the CUbiC Center
- Co-led the CUbiC Scholar Leadership Council to organize monthly workshops with industry liaisons

Hong Kong University of Science and TechnologyHong Kong SAR, ChinaPostgraduate Visiting Intern, Department of Electrical and Computer EngineeringAug. 2019–Dec. 2019Cadence Design Systems, Inc.San Jose, CA, USADesign Engineering Intern - Photonics, Custom IC & PCB GroupJun. 2018–Sep. 2018Rice UniversityHouston, TX, USAStudent Intern, Department of Electrical and Computer EngineeringJul. 2014–Sep. 2014

PUBLICATIONS -

Book Chapter

B1 **Y. Wang**, Z. Zhang, J. E. Bowers, and K.-T. Cheng, "Silicon photonics optical interconnects for data-centric artificial intelligence applications: A design automation perspective," in *Frontiers of Electronic Design (FED)*, A. Iranmanesh, Ed., in press, Cham: Springer International Publishing.

Refereed Journal Articles

J1 A. James, A. Rizzo, Y. Wang, A. Novick, S. Wang, R. Parsons, K. Jang, M. Hattink, and K. Bergman, "Process Variation-Aware Compact Model of Strip Waveguides for Photonic Circuit Simulation," *Journal of Lightwave Technology*, pp. 1–14, 2023. @ 10.1109/JLT.2023.3238847.

New York, NY, USA 2021–Present

Santa Barbara, CA, USA 2018–2021

Santa Barbara, CA, USA 2015–2018

> Beijing, China 2011–2015

2023–Present

- J2 A. Novick, A. James, L. Y. Dai, Z. Wu, A. Rizzo, S. Wang, Y. Wang, M. Hattink, V. Gopal, K. Jang, R. Parsons, and K. Bergman, "High-bandwidth density silicon photonic resonators for energy-efficient optical interconnects," *Applied Physics Reviews*, vol. 10, no. 4, p. 041 306, Nov. 2023. 10. 1063/5.0160441.
- J3 Z. Wu, L. Y. Dai, **Y. Wang**, S. Wang, and K. Bergman, "Flexible silicon photonic architecture for accelerating distributed deep learning," *Journal of Optical Communications and Networking*, 2023, to appear.
- J4 Y. Wang, P. Sun, J. Hulme, M. A. Seyedi, M. Fiorentino, R. G. Beausoleil, and K.-T. Cheng, "Energy Efficiency and Yield Optimization for Optical Interconnects via Transceiver Grouping," *Journal of Lightwave Technology*, vol. 39, no. 6, pp. 1567–1578, Mar. 2021. @ 10.1109/JLT.2020.3039489.
- J5 Z. Zhang, R. Wu, Y. Wang, C. Zhang, E. J. Stanton, C. L. Schow, K.-T. Cheng, and J. E. Bowers, "Compact Modeling for Silicon Photonic Heterogeneously Integrated Circuits," *Journal of Lightwave Technology*, vol. 35, no. 14, pp. 2973–2980, Jul. 2017. @ 10.1109/JLT.2017.2706721.

Refereed Conference Proceedings

- C1 A. Novick, M. Hattink, A. Rizzo, **Y. Wang**, V. Gopal, S. Wang, R. Parsons, and K. Bergman, "Integrated photonic resonant modulator-based equalization and optimization for DWDM," in *Optical Fiber Communication Conference (OFC) 2024*, to appear, Optica Publishing Group, 2024.
- C2 S. Wang, Y. Wang, X. Meng, K. Hosseini, T. T. Hoang, and K. Bergman, "Automated tuning of ring-assisted MZI-based interleaver for DWDM systems," in *Optical Fiber Communication Conference (OFC) 2024*, to appear, Optica Publishing Group, 2024.
- C3 Z. Wu, R. Parsons, S. Wang, Y. Wang, and K. Bergman, "Wavelength reconfigurable transceiver for multi-interface compute accelerator networks," in *Optical Fiber Communication Conference (OFC) 2024*, to appear, Optica Publishing Group, 2024.
- C4 G. Michelogiannakis, Y. Arafa, B. Cook, L. Y. Dai, A.-H. Hameed Badawy, M. Glick, Y. Wang, K. Bergman, and J. Shalf, "Efficient Intra-Rack Resource Disaggregation for HPC Using Co-Packaged DWDM Photonics," in *2023 IEEE International Conference on Cluster Computing (CLUSTER)*, Santa Fe, NM, USA: IEEE, Oct. 2023, pp. 158–172. (2) 10.1109/CLUSTER52292.2023.00021.
- C5 S. Wang, A. Novick, A. Rizzo, R. Parsons, S. Sanyal, K. J. McNulty, B. Y. Kim, Y. Okawachi, Y. Wang, A. Gaeta, M. Lipson, A. Gaeta, M. Lipson, and K. Bergman, "Integrated, Compact, and Tunable Band-Interleaving of a Kerr Comb Source," en, in *CLEO 2023*, San Jose, CA: Optica Publishing Group, 2023, STh3J.6. (2013) 10.1364/CLEO_SI.2023.STh3J.6.
- C6 Y. Wang, S. Wang, A. Novick, A. James, R. Parsons, A. Rizzo, and K. Bergman, "Dispersion-Engineered and Fabrication-Robust SOI Waveguides for Ultra-Broadband DWDM," en, in *Optical Fiber Communication Conference (OFC) 2023*, San Diego California: Optica Publishing Group, 2023, Th3A.4.
 (a) 10.1364/OFC.2023.Th3A.4.
- C7 A. James, Y. Wang, A. Rizzo, and K. Bergman, "Flexible, Process-Aware Compact Model of Effective Index in Silicon Waveguides for Commercial Foundries," in 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Turin, Italy: IEEE, Sep. 2022, pp. 173–174.
 10.1109/NUSOD54938.2022.9894784.
- C8 Y. Wang and K.-T. Cheng, "Traffic-Adaptive Power Reconfiguration for Energy-Efficient and Energy-Proportional Optical Interconnects," in 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), Munich, Germany: IEEE, Nov. 2021, pp. 1–9. 10.1109/ICCAD51958. 2021.9643475.
- C9 Y. Wang, J. Hulme, P. Sun, M. Jain, M. A. Seyedi, M. Fiorentino, R. G. Beausoleil, and K.-T. Cheng, "Characterization and Applications of Spatial Variation Models for Silicon Microring-Based Optical Transceivers," in 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA: IEEE, Jul. 2020, pp. 1–6. @ 10.1109/DAC18072.2020.9218608.
- C10 Y. Wang and K.-T. Cheng, "Task Mapping-Assisted Laser Power Scaling for Optical Network-on-Chips," in 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA: IEEE, Nov. 2019, pp. 1–6. @ 10.1109/ICCAD45719.2019.8942146.
- C11 Y. Wang, M. A. Seyedi, J. Hulme, M. Fiorentino, R. G. Beausoleil, and K.-T. Cheng, "Bidirectional tuning of microring-based silicon photonic transceivers for optimal energy efficiency," in *Proceedings of the 24th Asia and South Pacific Design Automation Conference*, Tokyo Japan: ACM, Jan. 2019, pp. 370–375. 10.1145/3287624.3287649.
- C12 Y. Wang, M. A. Seyedi, R. Wu, J. Hulme, M. Fiorentino, R. G. Beausoleil, and K.-T. Cheng, "Energy-efficient channel alignment of DWDM silicon photonic transceivers," in 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany: IEEE, Mar. 2018, pp. 601–604. 10.23919/DATE.2018.8342079.
- C13 R. Wu, M. A. Seyedi, Y. Wang, J. Hulme, M. Fiorentino, R. G. Beausoleil, and K.-T. Cheng, "Pairing of microring-based silicon photonic transceivers for tuning power optimization," in *2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC)*, Jeju: IEEE, Jan. 2018, pp. 135–140. 10.1109/ASPDAC.2018.8297295.
- C14 R. Wu, Y. Wang, Z. Zhang, C. Zhang, C. L. Schow, J. E. Bowers, and K.-T. Cheng, "Compact modeling and circuit-level simulation of silicon nanophotonic interconnects," in *Design, Automation & Test in Europe Conference & Exhibition (DATE)*, 2017, Lausanne, Switzerland: IEEE, Mar. 2017, pp. 602–605. 2017.7927057.
- C15 A. Ghofrani, M. A. Lastras-Montaño, Y. Wang, and K.-T. Cheng, "In-place Repair for Resistive Memories Utilizing Complementary Resistive Switches," in *Proceedings of the 2016 International Symposium on Low Power Electronics and Design*, San Francisco Airport CA USA: ACM, Aug. 2016, pp. 350–355. 10.1145/2934583.2934590.
- C16 C. Xu, F. X. Lin, Y. Wang, and L. Zhong, "Automated OS-level Device Runtime Power Management," in *Proceedings of the Twentieth International* Conference on Architectural Support for Programming Languages and Operating Systems, Istanbul Turkey: ACM, Mar. 2015, pp. 239–252. 10.1145/ 2694344.2694360.

Invited Conference Papers

- I1 Y. Wang, S. Wang, R. Parsons, A. Novick, V. Gopal, K. Jang, A. Rizzo, C.-P. Chiu, K. Hosseini, T. T. Hoang, S. Shumarayev, and K. Bergman, "Silicon photonics chip I/O for ultra high-bandwidth and energy-efficient die-to-die connectivity," in 2024 IEEE Custom Integrated Circuits Conference (CICC), to appear, IEEE, 2024.
- Y. Wang, A. Novick, R. Parsons, S. Wang, K. Jang, A. James, M. Hattink, V. Gopal, A. Rizzo, C.-P. Chiu, K. Hosseini, T. T. Hoang, and K. Bergman, "Scalable architecture for sub-pJ/b multi-Tbps comb-driven DWDM silicon photonic transceiver," in *Next-Generation Optical Communication: Components, Sub-Systems, and Systems XII*, G. Li, K. Nakajima, and A. K. Srivastava, Eds., San Francisco, United States: SPIE, Mar. 2023, p. 55.
 10.1117/12.2649506.
- I3 Y. Wang, L. Shao, M. A. Lastras-Montano, and K.-T. Cheng, "Taming Emerging Devices' Variation and Reliability Challenges with Architectural and System Solutions [Invited]," in 2019 IEEE 32nd International Conference on Microelectronic Test Structures (ICMTS), Kita-Kyushu City, Fukuoka, Japan: IEEE, Mar. 2019, pp. 90–95. 10.1109/ICMTS.2019.8730924.

Under Review and In Preparation

P1 Y. Wang, S. Wang, R. Parsons, S. Sanyal, A. Novick, A. Rizzo, K. Jang, V. Gopal, K. J. McNulty, B. Y. Kim, Y. Okawachi, C.-P. Chiu, K. Hosseini, T. T. Hoang, S. Shumarayev, M. Lipson, A. Gaeta, and K. Bergman, "Scalable co-packaged dwdm silicon photonics chip i/o driven by microresonator Kerr frequency combs," *Nature Communications Physics*, 2024, invited, in preparation.

Talks and Presentations ————

Invited talk SPIE Photonics West, San Francisco, CA, USA Scalable Architecture for Sub-pJ/b Multi-Tbps Comb-Driven DWDM Silicon Photonic Transceiver	Jan. 2023
PosterPh.D. Forum, ACM/IEEE Design Automation Conference (DAC), online virtual eventDesign and Optimization of Variation-Aware Runtime-Reconfigurable Optical Interconnects	Jun. 2020
Invited talk Optical/Photonic Interconnects for Computing Systems (OPTICS) workshop, Dresden, Germany Optimal Pairing and Non-Uniform Channel Alignment of Microring-based Transceivers for Comb Laser-Driven DWDM Silicon Photonics	Mar. 2018
Invited talk ECE Departmental Seminar, Hong Kong University of Science and Technology, Hong Kong SAR, China Variation-Aware Modeling and Design of Silicon Photonic Systems	Jan. 2018
Poster Optical/Photonic Interconnects for Computing Systems (OPTICS) workshop, Lausanne, Switzerland Variation-Aware Modeling and Design of Nanophotonic Interconnects	Mar. 2017

LEADERSHIP -

Center for Ubiquitous Connectivity (CUbiC)	SRC JUMP 2.0
- Co-led the CUbiC Scholar Leadership Council to organize monthly workshops with industry liaisons	2023–Present
- Co-led the Socket-to-Socket Distributed AI/ML/HPC Fabric Platform (SoSFab) research task for system testbed development	2023–Present
Columbia University in the City of New York New	v York, NY, USA
- Led the photonic integrated circuit (PIC) team, supervised by Prof. Keren Bergman, under the DARPA CHIPS program	2021-Present
- Co-led the design aggregation of a custom 300 mm full-wafer run with AIM Photonics involving multiple internal/external ri	ders 2023

PROFESSIONAL SERVICE -

Journal Reviewer

- Nature Nanotechnology
- IEEE Journal on Selected Areas in Communications
- IEEE Transactions on Computers
- IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
- IEEE Transactions on Very Large Scale Integration (VLSI) Systems
- IEEE Access

Conference External Reviewer

- IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Textbook Translation

- T1 C. Hawkins, J. Segura, and P. Zarkesh-Ha, CMOS Digital Integrated Circuits: A First Course (Chinese Edition), trans. by **Y. Wang** and Y. Yin. China Machine Press, 2016, original work published by the Institution of Engineering and Technology (IET) in 2013.
- T2 S. Kundu and A. Sreedhar, *Nanoscale CMOS VLSI Circuits: Design for Manufacturability (Chinese Edition)*, trans. by **Y. Wang** and W. Xie. China Science Publishing, 2014, original work published by McGraw-Hill Education in 2010.

Teaching Experience ———

Columbia University in the City of New York

Guest Lecturer

Spring 2023 ELEN 9403: Seminar in Photonics (Graduate-level)

University of California, Santa Barbara

Teaching Assistant Winter 2019 ECE 153B: Sensor & Peripheral Interface Design (Undergraduate-level)

Student Mentoring —

Songli Wang

Ph.D. Student at Columbia University Scalable link architectures, automated post-fabrication tuning Resulting joint publication(s): [C2], [I1], [P1], [I2]

Robert Parsons

Ph.D. Student at Columbia University Compact modeling of silicon photonic devices and circuits Resulting joint publication(s): [I1], [I2]

Kaylx Jang

Ph.D. Student at Columbia University Dispersion-engineered and fabrication-robust (de-)interleavers Resulting joint publication(s): [C6]

Zhenguo Wu

Ph.D. Student at Columbia University Reconfigurable architecture for optically connected systems Resulting joint publication(s): [C₃], [J₃]

Aneek E. James

Ph.D. Student at Columbia University, now with Draper Laboratory Wafer-scale process variation extraction and characterization Resulting joint publication(s): [J1], [C7]

Max Haimowitz

Ph.D. Student at Columbia University
 Scripted and automated large-scale silicon photonics chip layout
 > 80 mm²/reticle fully-scripted layout on a 300 mm full-wafer run

Awards and Honors -

Graduate Fellowship, Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA	2015
Outstanding Thesis Award, Department of Electronic Engineering, Tsinghua University, Beijing, China	2015
Scholarship for Sports Excellence, Department of Electronic Engineering, Tsinghua University, Beijing, China	2014

References –

A : from academia; I : from industry

A Keren Bergman

Charles Batchelor Professor of Electrical Engineering Columbia University in the City of New York bergman@ee.columbia.edu

A John E. Bowers

Director of Institute for Energy Efficiency, Distinguished Professor University of California, Santa Barbara jbowers@ucsb.edu

A Kwang-Ting Cheng

Vice-President for Research and Development, Chair Professor Hong Kong University of Science and Technology timcheng@ust.hk

Raymond G. Beausoleil

Senior Fellow and Senior Vice President Hewlett Packard Enterprise ray.beausoleil@hpe.com New York, NY, USA

Santa Barbara, CA, USA

A Yuan Xie

Chair Professor Hong Kong University of Science and Technology yuanxie@ust.hk

I Kaveh Hosseini

Technical Lead, Photonics Co-Packaging Architect Intel Corporation kaveh.hosseini@intel.com

I M. Ashkan Seyedi

Principal, Silicon Photonics Products Nvidia Corporation mseyedi@nvidia.com